
Chapter 31

Kalman Filter and its2

variants3

Reading
1. Barfoot, Chapter 3, 4 for Kalman filter

2. Thrun, Chapter 3 for Kalman filter, Chapter 4 for particle filters

3. Russell Chapter 15.4 for Kalman filter

Hidden Markov Models (HMMs) which we discussed in the previous4

chapter were a very general class of models. As a consequence algorithms for5

filtering, smoothing and decoding that we prescribed for the HMM are also6

very general. In this chapter we will consider the situation when we have a little7

more information about our system. Instead of writing the state transition and8

observation matrices as arbitrary matrices, we will use the framework of linear9

dynamical systems to model them better. Since we know the system a bit better,10

algorithms that we prescribe for these models for solving filtering, smoothing11

and decoding will also be more efficient. We will almost exclusively focus on12

the filtering problem in this chapter. The other two, namely smoothing and13

decoding, can also be solved easily using these ideas but are less commonly14

used for these systems.15

3.1 Background16

Multi-variate random variables and linear algebra For d-dimensional17

random variables X,Y ∈ Rd we have18

E[X + Y ] = E[X] + E[Y ];

1
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this is actually more surprising than it looks, it is true regardless of whether1

X,Y are correlated. The covariance matrix of a random variable is defined as2

cov(X) = E[(X − E[X]) (X − E[X])⊤];

we will usually denote this by Σ ∈ Rd×d. Note that the covariance matrix is,3

by construction, symmetric and positive semi-definite. This means it can be4

factorized as5

Σ = UΛU⊤

where U ∈ Rd×d is an orthonormal matrix (i.e., UU⊤ = I) and Λ is a6

diagonal matrix with non-negative entries. The trace of a matrix is the sum of7

its diagonal entries. It is also equal to the sum of its eigenvalues, i.e.,8

tr(Σ) =
d∑

i=1

Σii =

d∑
i=1

λi(Σ)

where λi(S) ≥ 0 is the ith eigenvalue of the covariance matrix S. The trace9

is a measure of the uncertainty in the multi-variate random variable X , if X10

is a scalar and takes values in the reals then the covariance matrix is also, of11

course, a scalar Σ = σ2.12

A few more identities about the matrix trace that we will often use in this13

chapter are as follows.14

• For matrices A,B we have15

tr(AB) = tr(BA);

the two matrices need not be square themselves, only their product does.16

• For A,B ∈ Rm×n
17

tr(A⊤B) = tr(B⊤A) =

m∑
i=1

n∑
j=1

BijAij .

This operation can be thought of as taking the inner product between18

two matrices.19

Gaussian/Normal distribution We will spend a lot of time working with20

the Gaussian/Normal distribution ? Why is it so ubiquitous?. The multi-variate d-dimensional Normal21

distribution has the probability density22

f(x) =
1√

det(2πΣ)
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
where µ ∈ Rd,Σ ∈ Rd×d denote the mean and covariance respectively. You23

should commit this formula to memory. In particular remember that24 ∫
x∈Rd

exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
dx =

√
det(2πΣ)
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which is simply expressing the fact that the probability density function inte-1

grates to 1.2

Figure 3.1: Probability density (left) and iso-probability contours (right) of a bi-variate
Normal distribution. Warm colors denote regions of high probability.

Given two Gaussian rvs. X,Y ∈ Rd and Z = X + Y we have3

E[Z] = E[X + Y ] = E[X] + E[Y ]

with covariance4

cov(Z) = ΣZ = ΣX +ΣY +ΣXY +ΣY X

where5

Rd×d ∋ ΣXY = E
[
(X − E[X]) (Y − E[Y ])⊤

]
;

the matrix SY X is defined similarly. If X,Y are independent (or uncorrelated)6

the covariance simplifies to7

ΣZ = ΣX +ΣY .

If we have a linear function of a Gaussian random variable X given by8

Y = AX for some deterministic matrix A then Y is also Gaussian with mean9

E[Y ] = E[AX] = AE[X] = AµX

and covariance10

cov(Y ) = E[(AX −AµX)(AX −AµX)⊤]

= E[A(X − µX)(X − µX)⊤A⊤]

= AE[(X − µX)(X − µX)⊤]A⊤

= AΣXA⊤.

(3.1)

This is an important result that you should remember.11
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3.2 Linear state estimation1

With that background, let us now look at the basic estimation problem. Let2

X ∈ Rd denote the true state of a system. We would like to build an estimator3

for this state, this is denote by4

X̂.

An estimator is any quantity that indicates our belief of what X is. The5

estimator is created on the basis of observations and we will therefore model6

it as a random variable. We would like the estimator to be unbiased, i.e.,7

E[X̂] = X;

this expresses the concept that if we were to measure the state of the system8

many times, say using many sensors or multiple observations from the same9

sensor, the resultant estimator X̂ is correct on average. The error in our belief10

is11

X̃ = X̂ −X.

The error is zero-mean E[X̃] = 0 and its covariance ΣX̃ is called the covari-12

ance of the estimator.13

Optimally combining two estimators Let us now imagine that we have two14

estimators X̂1 and X̂2 for the same true state X . We will assume that the two15

estimators were created independently (say different sensors) and therefore are16

conditionally independent random variables given the true state X

 Conditionally independent
observations from one true state

Say both of17

them are unbiased but each of them have a certain covariance of the error18

ΣX̃1
and ΣX̃2

.

We would like to combine the two to obtain a better estimate of what the19

state could be. Better can mean many different quantities depending upon the20

problem but in general in this course we are interested in improving the error21

covariance. Our goal is then22

Given two estimators X̂1 and X̂2 of the true state X combine them to
obtain a new estimator

X̂ = some function(X̂1, X̂2)

which has the best error covariance tr(ΣX̃).

3.2.1 One-dimensional Gaussian random variables23

Consider the case when X̂1, X̂2 ∈ R are Gaussian random variables with24

means µ1, µ2 and variances σ2
1 , σ

2
2 respectively. Assume that both are unbiased25

estimators of X ∈ R. Let us combine them linearly to obtain a new estimator26

X̂ = k1X̂1 + k2X̂2.
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How should we pick the coefficients k1, k2? We would of course like the new1

estimator to be unbiased, so2

E[X̂] = E[k1X̂1 + k2X̂2] = (k1 + k2)X = X

⇒ k1 + k2 = 1.

The variance of the X̂ is3

var(X̂) = k21σ
2
1 + k22σ

2
2 = k21σ

2
1 + (1− k1)

2σ2
2 .

The optimal k1 that leads to the smallest variance is thus given by4

k1 =
σ2
2

σ2
1 + σ2

2

.

We set the derivative of var(X̂) with respect to k1 to zero to get this. The final5

estimator is6

X̂ =
σ2
2

σ2
1 + σ2

2

X̂1 +
σ2
1

σ2
1 + σ2

2

X̂2. (3.2)

It is unbiased of course and has variance7

σ2
X̃

=
σ2
1σ

2
2

σ2
1 + σ2

2

.

Notice that since σ2
2/(σ

2
1 + σ2

2) < 1, the variance of the new estimator is8

smaller than either of the original estimators. This is an important fact to9

remember, combining two estimators always results in a better estimator.10

Some comments about the optimal combination.11

• It is easy to see that if σ2 ≫ σ1 then the corresponding estimator, namely12

X̂2 gets less weight in the combination. This is easy to understand, if13

one of our estimates is very noisy, we should rely less upon it to obtain14

the new estimate. In the limit that σ2 →∞, the second estimator is not15

considered at all in the combination.16

• If σ1 = σ2, the two estimators are weighted equally and since σ2
X̃

=17

σ2
1/2 the variance reduces by half after combination.18

• The minimal variance of the combined estimator is not zero. This is easy19

to see because if we have two noisy estimates of the state, combining20

them need not lead to us knowing the true state with certainty.21

3.2.2 General case22

Let us now perform the same exercise for multi-variate Gaussian random23

variables. We will again combine the two estimators linearly to get24

X̂ = K1X̂1 +K2X̂2
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where K1,K2 ∈ Rd×d are matrices that we would like to choose. In order for1

the estimator to be unbiased we again have the condition2

E[X̂] = E[K1X̂1 +K2X̂2] = (K1 +K2)X = X

⇒K1 +K2 = Id×d.

The covariance of X̂ is3

ΣX̂ = K1Σ1K
⊤
1 +K2Σ2K

⊤
2

= K1Σ1K
⊤
1 + (I −K1)Σ2(I −K1)

⊤.

Just like the minimized the variance in the scalar case, we will minimize the4

trace of this covariance matrix. We know that the original covariances Σ1 and5

Σ2 are symmetric. We will use the following identity for the partial derivative6

of a matrix product7

∂

∂A
tr(ABA⊤) = 2AB (3.3)

for a symmetric matrix B. Minimizing tr(ΣX̃) with respect to K1 amounts to8

setting9

∂

∂K1
tr(ΣX̃) = 0

which yields10

0 = K1Σ1 − (I −K1)Σ2

⇒ K1 = Σ2(Σ1 +Σ2)
−1 and K2 = Σ1(Σ1 +Σ2)

−1.

The optimal way to combine the two estimators is thus11

X̂ = Σ2(Σ1 +Σ2)
−1X̂1 +Σ1(Σ1 +Σ2)

−1X̂2. (3.4)

You should consider the similarities of this expression with the one for the12

scalar case in (3.2). The same broad comments hold, i.e., if one of the13

estimators has a very large variance, that estimator is weighted less in the14

combination.15

3.2.3 Incorporating Gaussian observations of a state16

Let us now imagine that we have a sensor that can give us observations of17

the state. The development in this section is analogous to our calculations18

in Chapter 2 with the recursive application of Bayes rule or the observation19

matrix of the HMM. We will consider a special type of sensor that gives20

observations21

Rp ∋ Y = CX + ν (3.5)

which is a linear function of the true state X ∈ Rd with the matrix C ∈ Rp×d
22

being something that is unique to the particular sensor. This observation is not23

precise and we will model the sensor as having zero-mean Gaussian noise24

ν ∼ N(0, Q)
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of covariance Q ∈ Rp×p. Notice something important here, the dimensionality1

of the observations need not be the same as the dimensionality of the state.2

This should not be surprising, after all the the number of observations in the3

HMM need not be the same as the number of the states in the Markov chain.4

We will solve the following problem. Given an existing estimator X̂ ′ we5

want to combine it with the observation Y to update the estimator to X̂ , in the6

best way, i.e., in a way that gives the minimal variance. We will again use a7

linear combination8

X̂ = K ′X̂ ′ +KY.

Again we want the estimator to be unbiased, so we set9

E[X̂] = E[K ′X̂ ′ +KY ]

= K ′X +K E[Y ]

= K ′X +K E[CX + ν]

= K ′X +KCX

= X.

to get that10

I = K ′ +KC.

⇒ X̂ = (I −KC)X̂ ′ +KY

= X̂ ′ +K(Y − CX̂ ′).

(3.6)

This is special form which you will do well to remember. The old estimator11

X̂ ′ gets an additive term K(Y − CX̂ ′). For reasons that will soon become12

clear, we call this term13

innovation = Y − CX̂ ′.

Let us now optimize K as before to compute the estimator with minimal14

variance. We will make the following important assumption in this case.15

We will assume that the observation Y is independent of the estima-
tor X̂ ′ given X . This is a natural assumption because presumably our
original estimator X̂ ′ was created using past observations and the present
observation Y is therefore independent of it given the state X .

The covariance of X̂ is16

ΣX̃ = (I −KC)ΣX̃′(I −KC)⊤ +KQK⊤.

We optimize the trace of ΣX̃ with respect to K to get

0 =
∂

∂K
tr(ΣX̃)

0 = −2(I −KC)ΣX̃′C
⊤ + 2KQ

⇒ ΣX̃′C
⊤ = K(CΣX̃′C

⊤ +Q)

⇒ K = ΣX̃′C
⊤(CΣX̃′C

⊤ +Q)−1.
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The matrix K ∈ Rd×p is called the “Kalman gain” after Rudoph Kalman who1

developed this method in the 1960s.2

Kalman gain This is an important formula and it helps to have a
mnemonic and a slightly simpler notation to remember it by. If Σ′ is the
covariance of the previous estimator, Q is the covariance of the zero-mean
observation and C is the matrix that gives the observation from the state,
then the Kalman gain is

K = ΣX̃′C
⊤(CΣX̃′C

⊤ +Q)−1. (3.7)

and the new estimator for the state is

X̂ = X̂ ′ +K(Y − CX̂ ′).

The covariance of the updated estimator X̂ is given by

ΣX̃ = (I −KC)ΣX̃′(I −KC)⊤ +KQK⊤

=
(
Σ−1

X̃′ + C⊤Q−1C
)−1

.
(3.8)

If C = I , the Kalman gain is the same expression as the optimal coeffi-
cient in (3.4). This should not be surprising because the observation is an
estimator for the state.

The second expression for ΣX̃ follows by substituting the value of the
Kalman gain K. Yet another way of remembering this equation equation
is to notice that

Σ−1

X̃
= Σ−1

X̃′ + C⊤Q−1C

K = Σ−1

X̃
C⊤Q−1

X̂ = X̂ ′ +Σ−1

X̃
C⊤Q−1

(
Y − CX̂ ′

)
.

(3.9)

 Derive these expressions for the
Kalman gain and the covariance
yourself.

3.2.4 An example3

Consider the scalar case when we have multiple measurements of some scalar4

quantity x ∈ R corrupted by noise.5

yi = x+ νi

where yi ∈ R and the scalar noise νi ∼ N(0, 1) is zero-mean and standard6

Gaussian. Find the updated estimate of the state x after k such measurements;7

this means both the mean and the covariance of the state.8

You can solve this in two ways, you can either use the measurement matrix9

C to be 1k = [1, . . . , 1] to be a vector of all ones and apply the formula10

in (3.7) and (3.8) Show that the estimate x̂k after k measurements has mean11

https://en.wikipedia.org/wiki/Rudolf_E._K%C3%A1lm%C/3%A1n
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and covariance1

E[x̂k] =
1

k

k∑
i=1

yi.

cov(x̂k) = C⊤C
−1

=
1

k
.

If we take one more measurement yk+1 = x + νk+1 with noise νk+1 ∼2

N(0, σ2), show using (3.9) that3

cov(x̂k+1)
−1 = cov(x̂k)

−1 +
1

σ2

⇒ cov(x̂k+1) =
σ2

σ2k + 1
.

The updated mean using (3.9) again4

E[x̂k+1] = x̂k + cov(x̂k+1)
1

σ2
(yk+1 − x̂k)

= x̂k +
yk+1 − x̂k

σ2k + 1
.

You will notice that if the noise on the k + 1th observation is very small, even5

after k observations, the new estimate fixates on the latest observation6

σ → 0⇒ x̂k+1 → yk+1.

Similarly, if the latest observation is very noisy, the estimate does not change7

much8

σ →∞⇒ x̂k+1 → x̂k.

3.3 Background on linear and nonlinear dynami-9

cal systems10

The true state X need not static. We will next talk about models for
how the state of the world evolves using ideas in dynamical systems.

A continuous-time signal is a function that associates to each time t ∈ R a real11

number y(t). We denote signals by12

y : t 7→ y(t).

Similarly a discrete-time signal is a function that associates to each integer k a13

real number y(k), we have been denoting quantities like this by yk.

 A continuous-time signal y(t)
and discrete-time signal yk.

14

A dynamical system is an operator (a box) that transforms an input signal15

u(t) or uk to an output y(t) or yk respectively. We call the former a continuous-16

time system and the latter a discrete-time system.17
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1

Almost always in robotics, we will be interested in systems that are
temporally causal, i.e., the output at time t0 is only a function the input up
to time t0. Analogously, the output at time k0 for a discrete-time system
is dependent only on the input up to time k0. Most systems in the physical
world at temporally causal. ? Can you give an example of a

dynamical system that is
non-causal?

State of a system We know that if the system is causal, in order to compute2

its output at a time t0, we only need to know all the input from time t =3

(−∞, t0]. This is a lot of information. The concept of a state, about which4

we have been cavalier until now helps with this. The state x(t1) of a causal5

system at time t1 is the information needed, together with the input u between6

times t1 and t2 to uniquely compute the output y(t2) at time t2, for all times7

t2 ≥ t1. In other words, the state of a system summarizes the whole history of8

what happened between (−∞, t1).9

Typically the state of a system is a d-dimensional vector in Rd. ? Discuss some examples of the
state.

Is the state of a system uniquely
defined?

The10

dimension of a system is the minimum d required to define a state.11

3.3.1 Linear systems12

A system is called a linear system if for any two input signals u1 and u2 and13

any two real numbers a, b14

u1 → y1

u2 → y2

au1 + bu2 → ay1 + by2.

Linearity is a very powerful property. For instance, it suggests that if we can15

decompose a complicated input into the sum of simple signals, then the output16

of the system is also a sum of the outputs of these simple signals. For example,17

if we can write the input as a Fourier series u(t) =
∑∞

i=0 ai cos(it)+bi sin(it)18

we can pass each of the terms in this summation to system and get the output19

of u(t) by summing up the individual outputs.20

Finite-dimensional systems can be written using a set of differential equa-21

tions as follows. Consider the spring-mass system. If z(t) denotes the position22

of the mass at time t and u(t) is the force that we are applying upon it at time23
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t, the position of the mass satisfies the differential equation

 A second-order spring mass
system

1

m
d2z(t)

dt2
+ c

dz(t)
dt

+ kz(t) = u(t)

or mz̈ + cż + kz = u

in short. Here m is the mass of the block, c is the damping coefficient of the2

spring and k is the spring force constant. Let us define3

z1(t) := z(t)

z2(t) :=
dz(t)

dt
.

We can now rewrite the dynamics as4 [
ż1
ż2

]
=

[
0 1

−k/m −c/m

] [
z1
z2

]
+

[
0

1/m

]
u

3.3.2 Linear Time-Invariant (LTI) systems5

If we define the state x(t) =

[
z1(t)

z2(t)

]
, then the above equation can be written6

as7

ẋ(t) = Ax(t) +Bu(t). (3.10)

This is a linear system that takes in the input u(t) and has a state x(t). You can8

check the conditions for linearity to be sure. It is also a linear time-invariant9

(LTI) system because the matrices A,B do not change with time t. The input10

u(t) is also typically called the control (or action, or the control input) and11

essentially the second half of the course is about computing good controls.12

Since the state at time t encapsulates everything that happened to the13

system due to the inputs {u(−∞), u(t)}, we can say that the system computes14

its output y(t) as a function of the state x(t) and the latest input u(t)15

y(t) = function(x(t), u(t))

If this function is linear we have16

y(t) = Cx(t) +Du(t). (3.11)

The pair of equations (3.10) and (3.11) together are the so-called state-space17

model of an LTI system. The development for discrete-time systems is com-18

pletely analogous, we will have19

xk+1 = Axk +Buk

yk = Cxk +Duk.
(3.12)

If the matrices A,B,C,D change with time, we have a time-varying system.20
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3.3.3 Nonlinear systems1

Nonlinear systems are defined entirely analogously as linear systems. Imagine2

if we had a non-linear spring in the spring-mass system whereby the dynamics3

of the block was given by4

mz̈ + cż + (k1z + k2z
2) = u.

The state of the system is still x = [z1, z2]
⊤. But we cannot write this second-5

order differential equation as two first-order linear differential equations. We6

are forced to write7

ẋ =

[
ż1
ż2

]
=

[
0 1

−k1/m−k2z1/m −c/m

] [
z1
z2

]
+

[
0

1/m

]
u.

Such systems are called nonlinear systems. We will write them succinctly as8

ẋ = f(x, u)

y = g(x, u).
(3.13)

The function f : X × U → X that maps the state-space and the input space9

to the state-space is called the dynamics of the system. Analogously, for10

discrete-time nonlinear systems we will have11

xk+1 = f(xk, uk)

yk = g(xk, uk).

? Is the nonlinear spring-mass
system time-invariant?

12

3.4 Markov Decision Processes (MDPs)13

Let us now introduce a concept called MDPs which is very close to Markov14

chains that we saw in the previous chapter. In fact, you are already implement-15

ing an MDP in your HW 1 problem on the Bayes filter.16

MDPs are a model for the scenario when we do not completely know
the dynamics f(xk, uk).

This may happen for a number of reasons and it is important to appreciate17

them in order to understand the widespread usage of MDPs.18

1. We did not do a good job of identifying the function f : X × U → X .19

This may happen when you are driving a car on an icy road, if you20

undertake the same control as you do on a clean road, you might reach21

a different future state xk+1.22

2. We did not use the correct state-space X . You could write down the23

state of the car as given by (x, y, θ, ẋ, ẏ, θ̇) where x, y are the Euclidean24

co-ordinates of the car and θ is its orientation. This is not a good model25
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for studying high-speed turns, which are affect by other quantities like1

wheel slip, the quality of the suspension etc.2

We may not even know the full state sometimes. This occurs when3

you are modeling how users interact with an online website like Ama-4

zon.com, you’d like to model the change in state of the user from5

“perusing stuff” to “looking stuff to buy it” to “buying it” but there are6

certainly many other variables that affect the user’s behavior. As another7

example, consider the path that an airplane takes to go from Philadelphia8

to Los Angeles. This path is affected by the weather at all places along9

the route, it’d be cumbersome to incorporate the weather to find the10

shortest-time path for the airplane.11

3. We did not use the correct control-space U for the controller. This is12

akin to the second point above. The gas pedal which one may think13

of as the control input to a car is only one out of the large number of14

variables that affect the running of the car’s engine.15

MDPs are a drastic abstraction of all the above situations. We
write

xk+1 = f(xk, uk) + ϵk (3.14)

where the “noise” ϵk is not under our control. The quantity ϵk is not
arbitrary however, we will assume that

1. noise ϵk is a random variable and we know its distribution. For
example, you ran your car lots of times on icy road and measured
how the state xk+1 deviates from similar runs on a clean road.
The difference between the two is modeled as ϵk. Note that the
distribution of ϵk may be a function of time k.

2. noise at different timesteps ϵ1, ϵ2, . . . , is independent.

Instead of a deterministic transition for our system from xk to xk+1, we
now have

xk+1 ∼ P(xk+1 | xk, uk).

which is just another way of writing (3.14).
The latter is a probability table of size |X | × |U| × |X | akin to the

transition matrix of a Markov chain except that there is a different tran-
sition matrix for every control u ∈ U .

? You should think about the
state-space, control-space and the
noise in the MDP for the Bayes filter
problem in HW 1. Where do we find
MDPs in real-life?
E.g., a Kuka manipulator such as this
https://www.youtube.com/watch?v=ym64NFCWORY
costs upwards of $100,000. Would
you model it as a stochastic
dynamical system?

The former version (3.14) is
more amenable to analysis. MDPs can be alternatively called stochastic
dynamical systems, we will use either names for them in this course.
For completeness, let us note down that linear stochastic systems will be
written as

xk+1 = Axk +Buk + ϵk.

The moral of this section is to remember that as pervasive as noise

https://www.youtube.com/watch?v=ym64NFCWORY
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seems in all problem formulations in this course, it models different
situations depending upon the specific problem. Understanding where
noise comes from is important for real-world applications.

Noise in continuous-time systems You will notice that we only talked about1

discrete-time systems with noise in (3.14). We can also certainly talk about2

continuous-time systems whose dynamics f we do not know precisely3

ẋ(t) = f(x(t), u(t)) + ϵ(t) (3.15)

and model the gap in our knowledge as noise ϵ(t). While this may seem quite4

natural, it is mathematically very problematic. The hurdle stems from the fact5

that if we want ϵ(t) to be a random variable at each time instant, then the6

signal ϵ(t) may not actually exist, e.g., it may not even be continuous. Signals7

like ϵ(t) exist only in very special cases, one of them is called “Brownian8

motion” where the increment of the signal after infinitesimal time ∆t is a9

Gaussian random variable10

ϵ(t+∆t)− ϵ(t) = N(0,∆t).

Figure 3.2: A typical Brownian motion signal ϵ(t). You can also see an animation
at https://en.wikipedia.org/wiki/File:Brownian_Motion.ogv

We will not worry about this technicality in this course. We will talk about11

continuous-time systems with noise but with the implicit understanding that12

there is some underlying real-world discrete-time system and the continuous-13

time system is only an abstraction of it.

? Do continuous-time systems,
stochastic or non-stochastic, exist in
the real world? Consider the Kuka
manipulator again, do you think the
dynamics of this robot is a
continuous-time system? Would you
model it so?

14

3.4.1 Back to Hidden Markov Models15

Since our sensors measure the state x of the world, it will be useful to think of16

the output y of a dynamical system as the observations from Chapter 2. This17

idea neatly ties back our development of dynamical systems to observations.18

https://en.wikipedia.org/wiki/File:Brownian_Motion.ogv
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Just like we considered an HMM with observation probability1

P(Yk = y| Xk = x)

we will consider dynamical systems for which we do not precisely know how2

the output computation. We will model the gap in our knowledge of the exact3

observation mechanism as the output being a noisy function of the state. This4

is denoted as5

yk = g(xk, uk) + νk. (3.16)

The noise νk is similar to the noise in the dynamics ϵk in (3.14).

 Observation noise and dynamics
noise are different in subtle ways.
The former may not always be due
to our poor modeling. For instance,
the process by which a camera
acquires its images has some
inherent noise. You may have seen a
side-by-side comparison of different
cameras using their ISOs

An image taken from a camera with
low lighting has a lot of “noise”.
What causes this noise?

Analogously,6

we can also have noise in the observations of a linear system7

yk = Cxk +Duk + νk.

Hidden Markov Models with underlying MDPs/Markov chains and
stochastic dynamical systems with noisy observations are two different
ways to think of the same concept, namely getting observations across
time about the true state of a dynamic world.

In the former we have

(state transition matrix) P(Xk+1 = x′ | Xk = x, uk = u)

(observation matrix) P(Yk = y | Xk = x),

while in the latter we have

(nonlinear dynamics) xk+1 = f(xk, uk) + ϵk

(nonlinear observation model) yk = g(xk, uk) + νk,

or
(linear dynamics) xk+1 = Axk +Buk + ϵk

(linear observation model) yk = Cxk +Duk + νk.

HMMs are easy to use for certain kinds of problems, e.g., speech-to-text,
or a robot wandering in a grid world (like the Bayes filter problem in
HW 1). Dynamical systems are more useful for certain other kinds of
problems, e.g., a Kuka manipulator where you can use Newton’s laws to
simply write down the functions f, g.

 You will agree that creating the
state-transition matrix for the Bayes
filter problem in HW 1 was really
the hardest part of the problem. If
the state-space were continuous and
not a discrete cell-based world, you
could have written the dynamics
very easily in one line of code.

3.5 Kalman Filter (KF)8

We will now introduce the Kalman Filter. It is the analog of the Bayes filter9

from the previous chapter. This is by far the most important algorithm in10

robotics and it is hard to imagine running any robot without the Kalman fiter11

or some variant of it.12

Consider a linear dynamical system with linear observations13

xk+1 = Axk +Buk + ϵk

yk = Cxk + νk.
(3.17)
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where the noise vectors1

ϵk ∼ N(0, R)

νk ∼ N(0, Q)

are both zero-mean and Gaussian with covariances R and Q respectively.

 We will assume that the
distribution of noise ϵk, νk does not
change with time k. If it does
change in your problem, you will
see that following equations are
quite easy to modify.

We2

have also assumed that D = 0 because typically the observations do not3

depend on the control.4

Our goal is to compute the best estimate of the state after multiple
observations

P(xk | y1, . . . , yk).

Notice that this is the same as the filtering problem that we solved for Hid-
den Markov Models. Just like we used the forward algorithm to compute
the filtering estimate recursively, we are going to use our development of
the Kalman gain to incorporate a new observation recursively.

3.5.1 Step 0: Observing that the state estimate at any timestep5

is a Gaussian6

Maintaining the entire probability distribution P(xk | y1, . . . , yk) is difficult7

now, as opposed to the HMM with a finite number of states. We will exploit8

the following important fact. If we assume that the initial distribution of x09

was a Gaussian, since all operations in (3.17) are linear, our new estimate of10

the state x̂k at time k is also a Gaussian11

x̂k|k ∼ P(xk | y1, . . . , yk) ≡ N(µk|k,Σk|k).

The subscript12

x̂k+1|k

denotes that the quantity being talked about, i.e., x̂k+1|k, or others like µk+1|k,13

is of the (k + 1)th timestep and was calculated on the basis of observations14

up to (and including) the kth timestep. We will therefore devise recursive15

updates to obtain µk+1|k+1,Σk+1|k+1 using their old values µk|k,Σk|k. We16

will imagine that our initial estimate for the state x̂0|0 has a known distribution17

x̂0|0 ∼ N(µ0|0,Σ0|0).

18

3.5.2 Step 1: Propagating the dynamics by one timestep19

Suppose we had an estimate x̂k|k after k observations/time-steps. Since the20

dynamics is linear, we can use the prediction problem to compute the estimate21
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of the state at time k + 1 before the next observation arrives1

P(xk+1 | y1, . . . , yk).

From the first equation of (3.17), this is given by2

x̂k+1|k = Ax̂k|k +Buk + ϵk

Notice that the subscript on the left-hand side is k + 1|k because we did3

not take into account the observation at timestep k + 1 yet. The mean and4

covariance of this estimate are given by5

µk+1|k = E[x̂k+1|k] = E[Ax̂k|k +Buk + ϵk]

= Aµk|k +Buk.
(3.18)

We can also calculate the covariance of the estimate x̂k+1|k to see that6

Σk+1|k = cov(x̂k+1|k) = cov(Ax̂k|k +Buk + ϵk)

= AΣk|kA
⊤ +R,

(3.19)

using our calculation in (3.1).  Observe that even if we knew the
state dynamics precisely, i.e., if
R = 0, we still have a non-trivial
propagation equation for Σk+1|k.

7

3.5.3 Step 2: Incorporating the observation8

After the dynamics propagation step, our estimate of the state is x̂k+1|k, this is9

the state of the system that we believe is true after k observations. We should10

now incorporate the latest observation yk+1 to update this estimate to get11

P(xk+1 | y1, . . . , yk, yk+1).

This is exactly the same problem that we saw in Section 3.2.3. Given the12

measurement13

yk+1 = Cxk+1 + νk+1

we first compute the Kalman gain Kk+1 and the updated mean of the estimate14

as15

Kk+1 = Σk+1|kC
⊤ (CΣk+1|kC

⊤ +Q
)−1

µk+1|k+1 = µk+1|k +Kk+1

(
yk+1 − Cµk+1|k

)
.

(3.20)

The covariance is given by our same calculation again16

Σk+1|k+1 = (I −Kk+1C) Σk+1|k, or

= (I −Kk+1C) Σk+1|k (I −Kk+1C)
⊤
+Kk+1QK⊤

k+1, or

=
(
Σ−1

k+1|k + C⊤Q−1C
)−1

.

(3.21)
The second expression is known as Joeseph’s form and is numerically more17

stable than the other expressions.18
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The new estimate of the state is

x̂k+1|k+1 ∼ P(xk+1 | y1, . . . , yk+1) ≡ N(µk+1|k+1,Σk+1|k+1).

and we can again proceed to Step 1 for the next timestep.

3.5.4 Discussion1

There are several important observations to make and remember about the2

Kalman Filter (KF).3

• Recursive updates to compute the best estimate given all past obser-4

vations. The KF is a recursive filter (just like the forward algorithm for5

HMMs) and incorporates observations one by one. The estimate that it6

maintains, namely x̂k+1|k+1, depends upon all past observations7

x̂k+1|k+1 ∼ P(xk+1 | y1, . . . , yk+1).

We have simply computed the estimate recursively.8

• Optimality of the KF for linear systems with Gaussian noise. The9

KF is optimal in the following sense. Imagine if we had access to all the10

observations y1, . . . , yk beforehand and computed some other estimate11

x̂fancy filter
k|k = some function(x̂0|0, y1, . . . , yk).

We use some other fancy method to design this estimator, e.g., nonlinear12

combination of the observations or incorporating observations across13

multiple timesteps together etc. to obtain something that has the smallest14

error with respect to the true state xk15

tr
(

E
ϵ1,...,ϵk,ν1,...,νk

[
(x̂fancy filter

k|k − xk)(x̂
fancy filter
k|k − xk)

⊤
])

. (3.22)

Then this estimate would be exactly the same as that of the KF16

x̂fancy filter
k|k = x̂KF

k|k.

This is a deep fact. First, the KF estimate was created recursively and yet17

we can do no better than it with our fancy estimator. This is analogous18

to the fact that the forward algorithm computes the correct filtering19

estimate even if it incorporates observations one by one recursively.20

Second, the KF combines the new observation and the old estimate21

linearly in (3.20). You could imagine that there is some other way to22

incorporate new observations, but it turns out that for linear dynamical23

systems with Gaussian noise, the KF is the best solution, we can do no24

better.25

• The KF is the best linear filter. If we had a nonlinear dynamical system26

or a non-Gaussian noise with a linear dynamics/observations, there are27

other filters that can give a smaller error (3.22) than the KF. In the next28
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section, we will take a look at one such example. However, even in1

these cases, the KF is the best linear filter.2

• Assumptions that are implicit in the KF. We assumed that both the3

dynamics noise ϵk+1 and the observation noise νk+1 are uncorrelated4

with the estimate x̂k+1|k computed prior to them (where did we use these5

assumptions?). This implicitly assumes that dynamics and observation6

noise are “white”, i.e., uncorrelated in time7

E[ϵk ϵ⊤k′ ] = 0 for all k, k′

E[νk ν⊤k′ ] = 0 for all k, k′.

? How should one modify the KF
equations if we have multiple
sensors in a robot, each coming in at
different frequencies?

The Wikipedia webpage at https://en.wikipedia.org/wiki/Kalman_filter#Example_application,_technical8

gives a simple example of a Kalman Filter.9

3.6 Extended-Kalman Filter (EKF)10

The KF heavily exploits the fact that our dynamics/measurements are linear.11

In robotics problems, either of them or typically both, will be nonlinear. The12

Extended-Kalman Filter (EKF) is a modification of the KF to handle such13

situations.14

Example of a nonlinear dynamical system The state of most real problems15

evolves as a nonlinear function of their current state and control. This is a the16

same for sensors such as cameras measure a nonlinear function of the state.17

We will first see how to linearize a given nonlinear system shown below.18

19

We have a radar sensor that measures the distance of the plane r from the20

radar trans-receiver up to noise ν. We would like to measure its distance x and21

height h. If the plane travels with a constant velocity, we have22

ẋ = v, and v̇ = 0,

and23

r =
√
x2 + h2 + ν.

Since we do not know how the plane might change its altitude, we will assume24

that it maintains a constant altitude25

ḣ = 0.

https://en.wikipedia.org/wiki/Kalman_filter#Example_application,_technical
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Notice that the above systems are our model for how the state of the airplane1

evolves and could of course be wrong. As we discussed, we will model this as2

noise.3 ẋ1

ẋ2

ẋ3

 =

0 1 0

0 0 0

0 0 0

 x1

x2

x3

+ ϵ;

r =
√
x2
1 + x2

3 + ν;

here x1 ≡ x, x2 ≡ v and x3 = h, and ϵ ∈ R3, ν ∈ R are zero-mean Gaussian4

noise. The dynamics in this case is linear but the observations are a nonlinear5

function of the state.6

One way to use the Kalman Filter for this problem is to linearize the7

observation equation around some state, say x1 = x2 = x3 = 0 using the8

Taylor series9

rlinearized = r(0, 0, 0) +
∂r

∂x1

∣∣∣∣
x1=0,x3=0

(x1 − 0) +
∂r

∂x3

∣∣∣∣
x1=0,x3=0

(x3 − 0)

= 0 +
2x1

2
√
x2
1 + x2

3

∣∣∣∣
x1=0,x3=0

x1 +
2x3

2
√

x2
1 + x2

3

∣∣∣∣
x1=0,x3=0

x3

= x1 + x3.

In other words, upto first order in x1, x3, the observations are linear and we10

can therefore run the KF for computing the state estimate after k observations.11

? You can try to perform a similar
linearization for a simple model of a
car

ẋ = cos θ

ẏ = sin θ

θ̇ = u.

where x, y, θ are the XY-coordinates
and the angle of the steering wheel
respectively. This model is known as
a Dubins car.

12

3.6.1 Propagation of statistics through a nonlinear transfor-13

mation14

Given a Gaussian random variable Rd ∋ x ∼ N(µx,Σx), we saw how to15

compute the mean and covariance after an affine transformation y = Ax16

E[y] = AE[x], and Σy = AΣxA
⊤.

If we had a nonlinear function of x17

Rp ∋ y = f(x)

we can use the Taylor series by linearizing around the mean of x to approximate18

the first and second moments of y as follows.19

y = f(x) ≈ f(µx) +
df
dx

∣∣∣∣
x=µx

(x− µx)

= Jx+ (f(µx)− Jµx).

where we have defined the Jacobian matrix20

Rp×d ∋ J =
df
dx

∣∣∣∣
x=µx

. (3.23)
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This gives1

E[y] ≈ E[Jx+ (f(µx)− Jµx)] = f(µx)

Σy = E[(y − E[y])(y − E[y])⊤] ≈ JΣxJ
⊤.

(3.24)

Observe how, up to first order, the mean µx is directly transformed by the2

nonlinear function f while the covariance Σx is transformed as if there were a3

linear operation y ≈ Jx.4

A simple example

y =

[
y1
y2

]
= f

x1

x2

x3

 =

[
x2
1 + x2x3

sinx2 + cosx3

]
.

We have5

df
dx

= ∇ f(x) =

[
2x1 x3 x2

0 cosx2 − sinx3

]
.

The Jacobian at µx = [µx1
, µx2

, µx3
]
⊤ is6

J = ∇ f(x)

∣∣∣∣
x=µx

=

[
2µx1

µx3
µx2

0 cosµx2
− sinµx3

]
.

It is very important to remember that we are approximating the distri-
bution of P(f(x)) as a Gaussian. Even if x is a Gaussian random variable,
the distribution of y = f(x) need not be Gaussian. Indeed y is only
Gaussian if f is an affine function of x.
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3.6.2 Extended Kalman Filter1

The above approach of linearizing the observations of the plane around the2

origin may lead to a lot of errors. ? Can you say where will our
linearized observation equation
incur most error?

This is because the point about which we3

linearize the system is fixed. We can do better by linearizing the system at4

each timestep. Let us say that we are given a nonlinear system5

xk+1 = f(xk, uk) + ϵ

yk = g(xk) + ν.

The central idea of the Extended Kalman Filter (EKF) is to linearize a
nonlinear system at each timestep k around the latest state estimate given
by the Kalman Filter and use the resultant linearized dynamical system in
the KF equations for the next timestep.

Step 1: Propagating the dynamics by one timestep6

We will linearize the dynamics equation around the mean of the previous state7

estimate µk|k8

xk+1 = f(xk, uk) + ϵ

≈ f(µk|k, uk) +
∂f

∂x

∣∣∣∣
x=µk|k

(
xk − µk|k

)
+ ϵk.

Let the Jacobian be9

A(µk|k) =
∂f

∂x

∣∣∣∣
x=µk|k

. (3.25)

The mean and covariance of the EKF after the dynamics propagation step is10

therefore given by11

µk+1|k = f(µk|k, uk)

Σk+1|k = AΣk|kA
⊤ +R.

(3.26)

It is worthwhile to notice the similarities of the above set of equations with (3.18)12

and (3.19). The mean µk|k is propagated using a nonlinear function f to get13

µk+1|k, the covariance is propagated using the Jacobian A(µk|k) which is14

recomputed using (3.25) at each timestep.15

Step 2: Incorporating the observation16

We have access to µk+1|k after Step 1, so we can linearize the nonlinear17

observations at this state.18

yk+1 = g(xk+1) + ν

≈ g(µk+1|k) +
dg
dx

∣∣∣∣
x=µk+1|k

(xk+1 − µk+1|k) + ν
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Again define the Jacobian1

C(µk+1|k) =
∂g

∂x

∣∣∣∣
x=µk+1|k

. (3.27)

Consider the fake observation which is a transformed version of the actual2

observation yk+1 (think of this as a new sensor or a post-processed version of3

the original sensor)4

y′k+1 = yk+1 − g(µk+1|k) + Cµk+1|k ≈ Cxk+1.

Our fake observation is a nice linear function of the state xk+1 and we can5

therefore use the Kalman Filter equations to incorporate this fake observation6

µk+1|k+1 = µk+1|k +K(y′k+1 − C µk+1|k)

where K = Σk+1|kC
⊤ (CΣk+1|kC

⊤ +Q
)−1

.

Let us resubstitute our fake observation in terms of the actual observation7

yk+1.8

y′k+1 − C µk+1|k = yk+1 − g(µk+1|k),

to get the EKF equations for incorporating one observation9

µk+1|k+1 = µk+1|k +K(yk+1 − g(µk+1|k))

Σk+1|k+1 = (I −KC) Σk+1|k.
(3.28)

Summary of the Extended Kalman Filter The EKF can use a nonlinear
model of the system but linearizes the dynamics and observation equations
at each timestep before plugging them into the Kalman Filter formulae.

1. Just like the KF, say we have the current state estimate µk|k and
Σk|k.

2. The system applies a control input uk and we update our state
estimate to be

µk+1|k = f(µk|k, uk)

Σk+1|k = AΣk|kA
⊤ +R.

where A depends on µk|k.
3. We next incorporate an observation by linearizing the observation

equations around µk+1|k

K = Σk+1|kC
⊤ (CΣk+1|kC

⊤ +Q
)−1

µk+1|k+1 = µk+1|k +K(yk+1 − g(µk+1|k))

Σk+1|k+1 = (I −KC) Σk+1|k

where again C depends on µk+1|k
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Discussion1

1. The EKF dramatically expands the applicability of the Kalman Filter. It2

can be used for most real systems, even with very complex models f, h.3

It is very commonly used in robotics and can handle nonlinear observa-4

tions from complex sensors such as a LiDAR and camera easily. For in-5

stance, sophisticated augmented/virtual reality systems like Google AR-6

Core/Snapchat/iPhone etc. (https://www.youtube.com/watch?v=cape_Af9j7w)7

run EKF to track the motion of the phone or of the objects in the image.8

2. The KF was special because it is the optimal linear filter, i.e., KF9

estimates have the smallest mean squared error with respect to the true10

state for linear dynamical systems with Gaussian. The EKF is a clever11

application of KF to nonlinear systems but it no longer has this property.12

There do exist filters for nonlinear systems that will have a smaller13

mean-squared error than the EKF. We will look at some of them in the14

next section.15

3. Linearization is the critical step in the implementation of the EKF and16

EKF state estimate can be easily quite bad, especially if the system goes17

into states where the linearized matrix A and the nonlinear dynamics18

f(xk, uk) differ significantly. A common trick for handling this is to19

perform multiple steps of dynamics propagation using a continuous-time20

model of the system between successive observations. Say we have a21

system22

ẋ = f(x(t), u(t)) + ϵ(t)

where ϵ(t + δt) − ϵ(t) is a Gaussian random variable N(0, Rδt) as23

δ → 0; see the section on Brownian motion for how to interpret noise24

in continuous-time systems. We can construct a discrete-time system25

from this as26

xt+∆t = x(t) + f(x(t), u(t)) ∆t+ ϵ

≡ f discrete-time(x(t), u(t)) + ϵ.

where ϵ ∼ N(0, R∆t) is noise. This is now a discrete-time dynamics27

and we can perform Step 1 of the EKF multiple times to obtain a more28

accurate estimate of µk+1|k and Σk+1|k.29

3.7 Unscented Kalman Filter (UKF)30

Linearization of the dynamics in the EKF is a neat trick to use the KF equations.31

But as we said, this can cause severe issues in problems where the dynamics32

is very nonlinear. In this section, we will take a look at a powerful method to33

handle nonlinear dynamics that is better than linearization.34

Let us focus on Step 1 which propagates the dynamics in the EKF.35

https://www.youtube.com/watch?v=cape_Af9j7w
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1

We know that even if x is Gaussian (faint blue points in top left pic-
ture), the transformed variable y = f(x) need not be Gaussian (faint blue
points in bottom left). The EKF is really approximating the probability
distribution P(xk+1 | y1, . . . , yk) as a Gaussian; this distribution could
be very different from a Gaussian. This is really the crux of the issue
in filtering for nonlinear systems. This approximation, which happens
because we are linearizing about the mean µk|k.

Let us instead do the following:2

1. Sample a few points from the Gaussian N(µk|k,Σk|k) (red points in3

top right).4

2. Transform each of the points using the nonlinear dynamics f (red points5

in bottom right).6

3. Compute their mean and covariance to get µk+1|k and Σk+1|k. Notice7

how the green ellipse is slightly different than the black ellipse (which8

is the true mean and covariance). Both of these would be different from9

the mean and covariance obtained by linearization of f (middle column)10

but the green one is more accurate.11

In general, we would need a large number of sample points (red) to
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accurately get the mean and covariance of y = f(x). The Unscented
Transform (UT) uses a special set of points known as “sigma points”
(these are the ones actually shown in red above) and transforms those
points. Sigma points have the special property that the empirical mean of
the transformed distribution (UT mean in the above picture) is close to
the true mean up to third order; linearization is only accurate up to first
order. The covariance (UT covariance) and true covariance also match up
to third order.

3.7.1 Unscented Transform1

Given a random variable x ∼ N(µx,Σx), the Unscented Transform (UT) uses2

sigma points to compute an approximation of the probability distribution of3

the random variable y = f(x).4

Preliminaries: matrix square root. Given a symmetric matrix Σ ∈ Rn×n,5

the matrix square root of Σ is a matrix S ∈ Rn×n such that6

Σ = SS.

We can compute this via diagonalization as follows.7

Σ = V DV −1

= V


d11 · · · 0

0

· · · 0

0 · · · dnn

V −1

= V


√
d11 · · · 0

0

· · · 0

0 · · ·
√
dnn


2

V −1.

We can therefore define8

S = V


√
d11 · · · 0

0

· · · 0

0 · · ·
√
dnn

V −1.

Notice that9

SS = (V D1/2V −1) (V D1/2V −1) = V DV −1 = Σ.

We can also define the matrix square root using the Cholesky decomposition10

Σ = LL⊤ which is numerically more stable than computing the square root11

using the above expression. Recall that matrices L and Σ have the same12

eigenvectors. Typical applications of the Unscented Transform will use this13

method.14
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Given a random variable Rn ∋ x ∼ N(µ,Σ), we will use the matrix1

square root to compute the sigma points as2

x(i) = µ+
√
nΣ

⊤
i

x(n+i) = µ−
√
nΣ

⊤
i

for i = 1, . . . , n,

(3.29)

where
√
nΣi is the ith row of the matrix

√
nΣ. There are 2n sigma points3 {

x(1), . . . , x(2n)
}

for an n-dimensional Gaussian. Each sigma point is assigned a weight4

w(i) =
1

2n
. (3.30)

We then transform each sigma point to get the transformed sigma points5

y(i) = f(x(i)).

The mean and covariance of the transformed random variable y can now be6

computed as7

µy =

2n∑
i=1

w(i)y(i)

Σy =

2n∑
i=1

w(i)
(
y(i) − µy

)(
y(i) − µy

)⊤
.

(3.31)

Example Say we have x =

[
r

θ

]
with µx = [1, π/2] and Σx =

[
σ2
r 0

0 σ2
θ

]
.8

We would like to compute the probability distribution of y = f(x) =

[
r cos θ

r sin θ

]
9

which is a polar transformation.

? Compute the mean and
covariance of y by linearizing the
function f(x).Since x is two-dimensional, we will have 410

sigma points with equal weights w(i) = 0.25. The square root in the sigma11

point expression is12

√
nΣ =

[√
2σr 0

0
√
2σθ

]
and the sigma points are13

x(1) =

[
1

π/2

]
+

[√
2σr

0

]
, x(3) =

[
1

π/2

]
−
[√

2σr

0

]
x(2) =

[
1

π/2

]
+

[
0√
2σθ

]
, x(4) =

[
1

π/2

]
−
[

0√
2σθ

]
.
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The transformed sigma points are1

y(1) =

[
r(1) cos θ(1)

r(1) sin θ(1)

]
=

[
0

1 +
√
2σr

]
y(2) =

[
r(2) cos θ(2)

r(2) sin θ(2)

]
=

[
cos(π/2 +

√
2σθ)

sin(π/2 +
√
2σθ)

]
y(3) =

[
0

1−
√
2σr

]
y(4) =

[
cos(π/2−

√
2σθ)

sin(π/2−
√
2σθ)

]
.

Figure 3.3: Note that the true mean is being predicted very well by the UT and is
clearly a better estimate than the linearized mean.

3.7.2 The UT with tuning parameters2

The UT is a basic template for a large suite of techniques that capture the3

covariance Σx as a set of points and transform those points through the nonlin-4

earity. You will see many alternative implementations of the UT that allow for5

user-tunable parameters. For instance, sometimes the UT is implemented with6

an additional sigma point x(0) = µ with weight w(0) = λ
n+λ and the weights7

of the other points are adjusted to be w(i) = 1
2(n+λ) for a user-chosen parame-8

ter λ. You may also see people using one set of weights w(i) for computing9

the mean µy and and another set of weights for computing the covariance Σy .10

? Are the transformed sigma points
y(i) the sigma points of
P(y) = N(µy,Σy)?

? We are left with a big lingering
question. Why do you think this
method is called the “unscented
transform”?



29

3.7.3 Unscented Kalman Filter (UKF)1

The Unscented Transform gives us a way to accurately estimate the mean and2

covariance of the transformed distribution through a nonlinearity. We can use3

the UT to modify the EKF to make it a more accurate state estimator. The4

resultant algorithm is called the Unscented Kalman Filter (UKF).5

Step 1: Propagating the dynamics by one timestep Given our current state6

estimate µk|k and Σk|k, we use the UT to obtain the updated estimates µk+1|k7

and Σk+1|k. If x(i) are the sigma points with corresponding weights w(i) for8

the Gaussian N(µk|k,Σk|k), we set9

µk+1|k :=

2n∑
i=1

w(i)f(x(i), uk)

Σk+1|k := R+

2n∑
i=1

w(i)
(
f(x(i))− µk+1|k

)(
f(x(i))− µk+1|k

)⊤ (3.32)

Step 2.1: Incorporating one observation The observation step is also10

modified using the UT. The key issue in this case is that we need a way to11

compute the Kalman gain in terms of the sigma points in the UT. We proceed12

as follows.13

Using new sigma points x(i) for the updated state distribution N(µk+1|k,Σk+1|k)14

with equal weights w(i) = 1/2n, we first compute their mean after the trans-15

formation16

ŷ =

2n∑
i=1

w(i)g(x(i)) (3.33)

and covariances17

Σyy := Q+

2n∑
i=1

w(i)
(
g(x(i))− ŷ

)(
g(x(i))− ŷ

)⊤
Σxy :=

2n∑
i=1

w(i)
(
f(x(i))− µk+1|k

)(
g(x(i))− ŷ

)⊤
.

(3.34)

Step 2.2: Computing the Kalman gain Until now we have written the18

Kalman gain using the measurement matrix C. We will now discuss a more19

abstract formulation that gives the same expression.20

Say we have a random variable x with known µx,Σx and get a new21

observation y. We saw how to incorporate this new observation to obtain a22

better estimator for x in Section 3.2.3. We will go through a similar analysis as23

before but in a slightly different fashion, one that does not involve the matrix24

C. Let25

p =

[
x

y

]
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and µp =
[
µx µy

]
and1

Σp =

[
Σxx Σxy

Σyx Σyy

]
.

Finding the best (minimum variance estimator) x̂ = µx+K(y−µy) amounts2

to minimizing3

min
K

E
[
tr (x̂− x) (x̂− x)

⊤
]
.

This is called the least squares problem, which you have seen before perhaps4

in slightly different notation. You can solve this problem to see that the best5

gain K is given by6

K∗ = ΣxyΣ
−1
yy . (3.35)

and this gain leads to an error of7

(x̂− x) (x̂− x)
⊤
= Σxx − ΣxyΣ

−1
yy Σyx = Σxx −K∗QyyK

∗⊤.

The nice thing about the Kalman gain in (3.35) is that we can compute it now8

using expressions of Σxy and Σyy in terms of the sigma points. This goes as9

as follows:10

K∗ = ΣxyΣ
−1
yy

µk+1|k+1 = µk+1|k +K (yk+1 − ŷ)

Σk+1|k+1 = Σk+1|k − ΣxyΣ
−1
yy Σyx

= Σk+1|k −K∗ΣyyK
∗⊤.

(3.36)

Summary of UKF

1. The Unscented Transform (UT) is an alternative to linearization.
It gives a better approximation of the mean and covariance of the
random variable after being transformed using a nonlinear function
than taking the Taylor series approximation.

2. The UKF uses the UT and its sigma points for propagation of
uncertainty through the dynamics (3.32) and observation nonlinear-
ities (3.36).

3.7.4 UKF vs. EKF11

As compared to the Extended Kalman Filter, the UKF is a better approximation12

for nonlinear systems. Of course, if the system is linear, both EKF and UKF13

are equivalent to a Kalman Filter.14

In practice, we typically use the UKF with some tuning parameters in15

the Unscented Transform as discussed in Section 3.7.2. In practice, the EKF16

also has tuning parameters where we may wish to perform multiple updates17

of the dynamics equations with a smaller time-discretization before the next18

observation comes in to alleviate the effect of linearizing the dynamics. A19

well-tuned EKF is often only marginally worse than an UKF: the former20
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requires us to compute Jacobians at each step which the latter does not, but1

the latter is often a more involved implementation.2

UKF/EKF approximate filtering distribution as a Gaussian An im-
portant point to remember about both the UKF and EKF is that even if
they can handle nonlinear systems, they still approximate the filtering
distribution

P(xk | y1, . . . , yk)

as a Gaussian.

3.8 Particle Filters (PFs)3

We next look at particle filters (PFs) which are a generalization of the UKF4

and can handle non-Gaussian filtering distributions. Just like the UT forms the5

building block of the UKF, the building block of a particle filter is the idea of6

importance sampling.7

3.8.1 Importance sampling8

Consider the following problem, given a probability distribution p(x), we9

want to approximate it as a sum of Dirac-delta distributions at points x(i), also10

called “particles”, each with weight w(i)
11

p(x) ≈
n∑

i=1

w(i)δx(i)(x).

Say all weights are equal 1/n. Depending upon how we pick the samples x(i),12

we can get very different approximations13

Figure 3.4: Black lines denote particles x(i), while red and blue curves denote the
approximations obtained using them. If there are a large number of particles in a given
region, the approximated probability density of that region is higher.

We see in Figure 3.4 that depending upon the samples, the approxi-
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mated probability distributions p̂(x) can be quite different. Importance
sampling is a technique to sample the particles to approximate a given
probability distribution p(x). The main idea is to use another known
probability distribution, let us call it q(x) to generate particles x(i) and
account for the differences between the two by assigning weights to each
particle

For i = 1, . . . , n,

x(i) ∼ q

w(i) =
p(x(i))

q(x(i))
.

The original distribution p(x) is called the “target” and our chosen distri-
bution q(x) is called the “proposal”. If the number of particles n is large,
we can expect a better approximation of the target density p(x).

1

3.8.2 Resampling particles to make the weights equal2

A particle filter modifies the weights of each particle as it goes through the3

dynamics and observation update steps. This often causes some particles to4

have very low weights and some others to have very high weights.5
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Figure 3.5: An example run of a particle filter. The robot is shown by the green dot
in the top right. Observations from a laser sensor (blue rays) attached to the robot
measure its distance in a 360-degree field of view around it. Red dots are particles, i.e.,
possible locations of the robot that we need in order to compute the filtering density
P(xk | y1, . . . , yk). You should think of this picture as being similar to Problem 1 in
Homework 1 where the robot was traveling on a grid. Just like the the filtering density
in Problem 1 was essentially zero in some parts of the domain, the particles, say in the
bottom left, will have essentially zero weights in a particle filter once we incorporate
multiple observations from the robot in top right. Instead of having to carry around
these null particles with small weights, the resampling step is used to remove them and
sample more particles, say in the top right, where we can benefit from a more accurate
approximation of the filtering density.

The resampling step takes particles
{
w(i), x(i)

}n
i=1

which approxi-
mate a probability density p(x)

p(x) =

n∑
i=1

w(i)δx(i)(x)

and returns a new set of particles x′(i) with equal weights w′(i) = 1/n

that approximate the same probability density

p(x) =
1

n

n∑
i=1

δx′(i)(x).

The goal of the resampling step is to avoid particle degeneracy, i.e.,
remove unlikely particles with very low weights and effectively split the
particles with very large weights into multiple particles.
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1

Consider the weights of particles
{
w(i)

}
arranged in a roulette wheel as shown2

above. We perform the following procedure: we start at some location, say3

θ = 0, and move along the wheel in random increments of the angle. After4

each random increment, we add the corresponding particle into our set
{
x′(i)

}
.5

Since particles with higher weights take up a larger angle in the circle, this6

procedure will often pick those particles and quickly move across particles7

with small weights without picking them too often. We perform this procedure8

n times for n particles. As an algorithm9

1. Let r be a uniform random variable in interval [0, 1/n]. Pick c = w(1)
10

and initialize i = 1.11

2. For each m = 1, . . . , n, let u = r+(m−1)/n. Increment i ← i+1 and12

c ← c+ w(i) while u > c and set new particle location x′(m)
= x(i).13

It is important to notice that the resampling procedure does not actually14

change the locations of particles. Particles with weights much lower than 1/n15

will be eliminated while particles with weights much higher than 1/n will be16

“cloned” into multiple particles each of weight 1/n.17

 There are many other methods of
resampling. We have discussed here,
something known as “low variance
resampling”, which is easy to
remember and code up. Fancier
resampling methods also change the
locations of the particles. The goal
remains the same, namely to
eliminate particles with low weights.

Figure 3.6: A cartoon depicting resampling. Disregard the different notation in this
cartoon. Resampling does not change the probability distribution that we wish to
approximate; it simply changes the particles and their weights.



35

3.8.3 Particle filtering: the algorithm1

The basic template of a PF is similar to that of the UKF and involves two2

steps, the first where we propagate particles using the dynamics to estimate3

P(xk+1 | y1, . . . , yk) and a second step where we incorporate the observation4

to compute the updated distribution P(xk+1 | y1, . . . , yk+1).5

Before we look at the theoretical derivation of a particle filter, it will help6

to go through the algorithm as you would implement on a computer. We7

assume that we have access to particles x(i)
k|k8

P(xk | y1, . . . , yk) =
1

n

n∑
i=1

δ
x
(i)

k|k
(x),

all with equal weights w(i)
k|k = 1/n.9

1. Step 1: Propagating the dynamics. Each particle i = 1, . . . , n is
updated by one timestep

x
(i)
k+1|k = f(x

(i)
k|k, uk) + ϵk

where f is the system dynamics using Gaussian noise ϵk ∼
N(0, R). Weights of particles are unchanged w

(i)
k+1|k = w

(i)
k|k =

1/n.
2. Step 2: Incorporating the observation. Given a new observation

yk+1, we update the weight of each particle using the likelihood of
receiving that observation

w
(i)
k+1|k+1 ∝ P(yk+1 | x(i)

k+1|k) w
(i)
k+1|k.

Note that P(yk+1 | x(i)
k+1|k) is a Gaussian and depends upon the

Gaussian observation noise νk. The mean of this Gaussian is
g(x

(i)
k+1|k) and its variance is equal to Q, i.e.,

P(yk+1 | x(i)
k+1|k) = P(νk+1 ≡ yk+1 − g(x

(i)
k+1|k))

=
1√

(2π)p det(Q)
exp

(
−
ν⊤k+1Q

−1νk+1

2

)
.

Normalize the weights w(i)
k+1|k+1 to sum up to 1.

3. Step 3: Resampling step Perform the resampling step to obtain
new particle locations x(i)

k+1|k+1 with uniform weights w(i)
k+1|k+1 =

1/n.
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3.8.4 Example: Localization using particle filter1

18 
initialization 

2

19 
observation 

3

20 
resampling 

4
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21 
motion update 

1

22 
measurement 

2

23 
weight update 

3
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24 
resampling 

1

25 
motion update 

2

26 
measurement 

3
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27 
weight update 

1

28 
resampling 

2

29 
motion update 

3



40

30 
measurement 

1

31 
weight update 

2

32 
resampling 

3
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33 
motion update 

1

34 
measurement 

2

3.8.5 Theoretical insight into particle filtering3

Step 1: Propagating the dynamics As we introduced in the section on4

Markov Decision Processes (MDPs), a stochastic dynamical system5

xk+1 = f(xk, uk) + ϵk

is equivalent to a probability transition matrix xk+1 ∼ P(xk+1 | xk, uk).
Our goal is to approximate the distribution of xk+1|k using particles. What
proposal distribution show we choose? The “closest” probability distribution
to xk+1|k that we have available is xk|k. So we set

target :P(xk+1 | y1, . . . , yk)
proposal :P(xk | y1, . . . , yk)

 In this sense, picking a proposal
distribution to draw particles from is
like linearization. Better the match
between the proposal and the target,
fewer samples we need to
approximate the target.

6

Suppose we had performed resampling on our particle set from the distri-7
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bution xk|k and have a set of n particles
{
x
(i)
k|k

}
with equal weights 1/n1

P(xk | y1, . . . , yk) ≈
1

n

n∑
i=1

δ
x
(i)

k|k
(x).

Propagating the dynamics in a PF involves computing importance sampling2

weights. If we had a particle at location x that was supposed to approximate3

the distribution of xk+1|k, as we saw for importance sampling, its importance4

weight is the ratio of the target and proposal densities at that location5

wk+1|k(x) =
P(xk+1 = x | y1, . . . , yk)

P(xk = x | y1, . . . , yk)
.

Let us focus on the numerator. We have6

P(xk+1 = x | y1, . . . , yk) =
∫

P(xk+1 = x, xk = x′ | y1, . . . , yk) dxk

=

∫
P(xk+1 = x | xk = x′, y1, . . . , yk) P(xk = x′ | y1, . . . , yk)dxk

=

∫
P(xk+1 = x | xk = x′) P(xk = x′ | y1, . . . , yk)dx′

≈ 1

n

∫
P(xk+1 = x | xk = x′)

n∑
i=1

δ
x
(i)

k|k
(x′)dx′

=
1

n

n∑
i=1

P(xk+1 = x | xk = x
(i)
k|k, u = uk),

where the system dynamics is f(xk, uk) + ϵk and uk is the control at time k.7

The denominator P(xk = x
(i)
k|k | y1, . . . , yk) when evaluated at particles x(i)

k|k8

is simply 1/n. This gives us weights9

wk+1|k(x) =

n∑
i=1

P(xk+1 = x | xk = x
(i)
k|k, u = uk). (3.37)

Let us now think about what particles we should pick for xk+1|k. We have10

from (3.37) a function that lets us compute the correct weight for any particle11

we may choose to approximate xk+1|k.12

Say we keep the particle locations unchanged, i.e., x(i)
k+1|k = x

(i)
k|k. We13

then have14

P(xk+1 = x | y1, . . . , yk) ≈
n∑

i=1

wk+1|k(x
(i)
k|k) δx(i)

k|k
(x). (3.38)

 Draw a picture of how this
approximation looks.

You will notice that keeping the particle locations unchanged may be a very15

poor approximation. After all, the probability density P(xk+1 | y1, . . . , yk) is16

large, not at the particles x(i)
k|k (that were a good approximation of xk|k), but17

rather at the transformed locations of these particles18

f(x
(i)
k|k, uk).
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We will therefore update the locations of the particles to be1

x
(i)
k+1|k = f(x

(i)
k|k, uk) (3.39)

with weight of the ith particle given by2

w
(i)
k+1|k := wk+1|k(x

(i)
k+1|k) =

n∑
j=1

P(xk+1 = x
(i)
k+1|k | xk = x

(j)
k|k, u = uk)

≈ P(xk+1 = x
(i)
k+1|k | xk = x

(i)
k|k, u = uk).

(3.40)
The approximation in the above equation is very crude: we are essentially say-3

ing that each particle x
(i)
k|k is transformed independently of the other particles4

to a new location x
(i)
k+1|k = f(x

(i)
k|k, uk). This completes the first step of a5

particle filter and we have6

P(xk+1 = x | y1, . . . , yk) ≈
n∑

i=1

w
(i)
k+1|kδx(i)

k+1|k
(x).

Step 2: Incorporating the observation The target and proposal distributions7

in this case are8

target :P(xk+1 | y1, . . . , yk, yk+1)

proposal :P(xk+1 | y1, . . . , yk).

Since we have particles x(i)
k+1|k with weights w(i)

k+1|k for the proposal distri-9

bution obtained from the propagation step, we now like to update them to10

incorporate the latest observation yk+1. Let us imagine for a moment that the11

weights w(i)
k+1|k are uniform. We would then set weights12

w(x) =
P(xk+1 = x | y1, . . . , yk, yk+1)

P(xk+1 = x | y1, . . . , yk)

∝ P(yk+1| xk+1 = x)P(xk+1 = x | y1, . . . , yk)
P(xk+1 = x | y1, . . . , yk)

(by Bayes rule)

= P(yk+1| xk+1 = x).

for each particle x = x
(i)
k+1|k to get the approximated distribution as13

P(xk+1 = x | y1, . . . , yk+1) ≈
n∑

i=1

P(yk+1 | x(i)
k+1|k) w

(i)
k+1|kδx(i)

k+1|k
(x)

(3.41)
You will notice that the right hand side is not normalized and the distribution14

does not integrate to 1 (why? because we did not write the proportionality15

constant in the Bayes rule above). This is easily fixed by normalizing the16
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coefficients P(yk+1 | x(i)
k+1|k) w

(i)
k+1|k to sum to 1 as follows1

w
(i)
k+1|k+1 :=

P(yk+1 | x(i)
k+1|k) w

(i)
k+1|k∑

j P(yk+1 | x(j)
k+1|k) w

(j)
k+1|k

.

Step 3: Resampling step As we discussed in the previous section, after2

incorporating the observation, some particles may have very small weights.3

The resampling procedure resamples particles so that all of them have equal4

weights 1/n.5 {
x
(i)
k+1|k+1, 1/n

}n

i=1
= resample

({
x
(i)
k+1|k+1, w

(i)
k+1|k+1

}n

i=1

)
.

3.9 Discussion6

This brings our study of filtering to a close. We have looked at some of the most7

important algorithms for a variety of dynamical systems, both linear and nonlin-8

ear. Although, we focused on filtering in this chapter, all these algorithms have9

their corresponding “smoothing” variants, e.g., you can read about how a typi-10

cal Kalman smoother is implemented at https://en.wikipedia.org/wiki/Kalman_filter#Fixed-11

lag_smoother. Filtering, and state estimation, is a very wide area of research12

even today and you will find variants of these algorithms in almost every13

device which senses the environment.14

https://en.wikipedia.org/wiki/Kalman_filter#Fixed-lag_smoother
https://en.wikipedia.org/wiki/Kalman_filter#Fixed-lag_smoother
https://en.wikipedia.org/wiki/Kalman_filter#Fixed-lag_smoother
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